Reading CSV
Create CSV file with the following content and name it "AAPL.csv". It contains stock information for few days. You can get more data on https://finance.yahoo.com/quote/AAPL/history?p=AAPL.
Date,Open,High,Low,Close,Volume,Adj Close
2017-01-20,120.449997,120.449997,119.730003,120.00,29479900,120.00
2017-01-19,119.400002,120.089996,119.370003,119.779999,25295700,119.779999
2017-01-18,120.00,120.50,119.709999,119.989998,23644700,119.989998
2017-01-17,118.339996,120.239998,118.220001,120.00,34078600,120.00
2017-01-13,119.110001,119.620003,118.809998,119.040001,25938300,119.040001
2017-01-12,118.900002,119.300003,118.209999,119.25,27002400,119.25
2017-01-11,118.739998,119.93,118.599998,119.75,27418600,119.75
Read and print all rows
Read all rows from CSV and print it out.
import pandas as pd
def test_run():
df = pd.read_csv("data/AAPL.csv")
print df
if __name__ == "__main__":
test_run()
Here is the output when we run the code above.
Date Open High Low Close Volume Adj Close
0 2017-01-20 120.449997 120.449997 119.730003 120.000000 29479900 120.000000
1 2017-01-19 119.400002 120.089996 119.370003 119.779999 25295700 119.779999
2 2017-01-18 120.000000 120.500000 119.709999 119.989998 23644700 119.989998
3 2017-01-17 118.339996 120.239998 118.220001 120.000000 34078600 120.000000
4 2017-01-13 119.110001 119.620003 118.809998 119.040001 25938300 119.040001
5 2017-01-12 118.900002 119.300003 118.209999 119.250000 27002400 119.250000
6 2017-01-11 118.739998 119.930000 118.599998 119.750000 27418600 119.750000
Read header, tail or range
Read only header, first two rows or specified range.
import pandas as pd
def test_run():
df = pd.read_csv("data/AAPL.csv")
print df.head(n=1)
print df.tail(n=2)
print df[2:3]
if __name__ == "__main__":
test_run()
Here is the output.
Date Open High Low Close Volume Adj Close
0 2017-01-20 120.449997 120.449997 119.730003 120.0 29479900 120.0
Date Open High Low Close Volume Adj Close
5 2017-01-12 118.900002 119.300003 118.209999 119.250000 27002400 119.250000
6 2017-01-11 118.739998 119.930000 118.599998 119.750000 27418600 119.750000
Date Open High Low Close Volume Adj Close
2 2017-01-18 120.0 120.5 119.709999 119.989998 23644700 119.989998
Last updated
Was this helpful?