Cumulative Returns
Last updated
Last updated
import os
import pandas as pd
import matplotlib.pyplot as plt
def symbol_to_path(symbol, base_dir="data"):
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def get_data(symbols, dates):
df = pd.DataFrame(index=dates)
if 'SPY' not in symbols: # add SPY for reference, if absent
symbols.insert(0, 'SPY')
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
df_temp = df_temp.rename(columns={'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY': # drop dates SPY did not trade
df = df.dropna(subset=["SPY"])
return df
def plot_data(df, title="Stock prices", xlabel="Date", ylabel="Price"):
ax = df.plot(title=title, fontsize=12)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
plt.show()
def compute_cumulative_returns(df):
return ((df / df.ix[0].values) - 1)
def test_run():
dates = pd.date_range('2012-01-01', '2012-12-31') # one month only
symbols = ['SPY', 'XOM']
df = get_data(symbols, dates)
plot_data(df)
daily_returns = compute_cumulative_returns(df)
plot_data(daily_returns, title="Cumulative returns", ylabel="Cumulative returns")
if __name__ == "__main__":
test_run()
Here is the chart with original data.
And here is the one showing cumulative percentage.