Daily Returns
Last updated
Last updated
import os
import pandas as pd
import matplotlib.pyplot as plt
def symbol_to_path(symbol, base_dir="data"):
"""Return CSV file path given ticker symbol."""
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def get_data(symbols, dates):
"""Read stock data (adjusted close) for given symbols from CSV files."""
df = pd.DataFrame(index=dates)
if 'SPY' not in symbols: # add SPY for reference, if absent
symbols.insert(0, 'SPY')
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
df_temp = df_temp.rename(columns={'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY': # drop dates SPY did not trade
df = df.dropna(subset=["SPY"])
return df
def plot_data(df, title="Stock prices", xlabel="Date", ylabel="Price"):
"""Plot stock prices with a custom title and meaningful axis labels."""
ax = df.plot(title=title, fontsize=12)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
plt.show()
def compute_daily_returns(df):
"""Compute and return the daily return values."""
daily_returns = df.pct_change()
# Daily return values for the first date cannot be calculated. Set these to zero.
daily_returns.ix[0, :] = 0
# Alternative method
# daily_returns = (df / df.shift(1)) - 1
# daily_returns.ix[0, :] = 0
# Another alternative method
# daily_returns = df.copy()
# compute daily returns for row 1 onwards
# daily_returns[1:] = (daily_returns[1:] / daily_returns[-1:].values) - 1
# daily_returns.ix[0, :] = 0 # set daily returns for row 0 to 0
return daily_returns
def test_run():
# Read data
dates = pd.date_range('2012-07-01', '2012-07-31') # one month only
symbols = ['SPY', 'XOM']
df = get_data(symbols, dates)
plot_data(df)
# Compute daily returns
daily_returns = compute_daily_returns(df)
plot_data(daily_returns, title="Daily returns", ylabel="Daily returns")
if __name__ == "__main__":
test_run()
Here are the two charts.
Observe that SPY and XOM stocks are somehow connected. It seems that SPY is following XOM stock changes.