Given an arraynumsof n _integers, are there elements _a, b, c _in nums such that _a+b+c= 0? Find all unique triplets in the array which gives the sum of zero.
Note:
The solution set must not contain duplicate triplets.
Example:
Given array nums = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
Solution
O(n pow 3) solution is as follows, but it does not prevent duplicates.
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
for (int i = 0; i < nums.length - 2; i++) {
for (int j = i + 1; j < nums.length - 1; j++) {
for (int k = j + 1; k < nums.length; k++) {
if (nums[i] + nums[j] + nums[k] == 0) {
List<Integer> found = new ArrayList<>();
found.add(nums[i]);
found.add(nums[j]);
found.add(nums[k]);
result.add(found);
}
}
}
}
return result;
}
}
Here is the code.
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(nums);
for (int i = 0; i < nums.length - 2; i++) {
if (i > 0 && nums[i - 1] == nums[i]) { // the same numbers to avoid duplicates
continue;
}
int j = i + 1;
int k = nums.length - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum == 0) {
List<Integer> triplet = new ArrayList<>();
triplet.add(nums[i]);
triplet.add(nums[j]);
triplet.add(nums[k]);
result.add(triplet);
j++;
k--;
// avoid duplicates - look at the previous number, if the same, skip it
while (j < k && nums[j] == nums[j - 1]) {
j++;
}
while (j < k && nums[k] == nums[k + 1]) {
k--;
}
} else if (sum < 0) {
j++;
} else {
k--;
}
}
}
return result;
}
}