Algorithms
  • Introduction
  • Analysis of Algorithms
  • Numbers
    • Reverse Integer
    • Palindroms
      • Valid Palindrome
    • Prime factor
    • Prime Number
    • Roman to Integer
    • Happy Number
    • p^k
  • Searching
    • Union-Find Algorithms
    • Finding Peak
    • Find Sum in Array
    • Binary Search
      • Find Index Binary Search
      • Sqrt(x)
      • Search in Rotated Sorted Array
      • Guess Number Higher or Lower
      • First Bad Version
      • Find Peak Element
      • Find Minimum in Rotated Sorted Array
      • Find Minimum in Rotated Sorted Array II
      • Search for a Range
      • Closest Binary Search Tree Value
      • Find K Closest Elements
      • Search in a Sorted Array of Unknown Size
      • Pow(x, n)
      • Valid Perfect Square
      • Find Minimum in Rotated Sorted Array II
      • Intersection of Two Arrays
      • Intersection of Two Arrays II
      • Two Sum II - Input array is sorted
      • Find the Duplicate Number
    • Longest Common Prefix
  • Sorting
    • Elementary Sorts
    • Insertion Sort
    • Bubble Sort
    • Mergesort
    • Quicksort
    • Radix Sort
    • Heap Sort
  • Data Structures
    • Array & List
      • Find Pivot Index
      • Largest Number At Least Twice of Others
      • Plus One
      • Diagonal Traverse
      • Spiral Matrix
      • Pascal's Triangle
      • Implement strStr()
      • Add Binary
      • Duplicate Counts
      • Find Duplicates
      • Reverse String
      • Array Partition I
      • Two Sum II - Input array is sorted
      • Remove Element
      • Max Consecutive Ones
      • Minimum Size Subarray Sum
      • Reverse Words in a String
      • Reverse Words in a String III
      • Remove Duplicates from Sorted Array
      • Move Zeroes
      • Rotate Array
      • Rotate Image
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Valid Anagram
      • 3Sum
      • String to Integer (atoi)
      • Count and Say
      • Merge Sorted Array
      • Shuffle an Array
      • Max Area of Island
    • Matrix
    • Stack
      • Valid Parentheses
      • Min Stack
    • Queue
    • Linked List
      • Design Linked List
      • Design Doubly Linked List
      • Find Middle Element
      • Doubly Linked List
      • Cyclic Linked List
      • Linked List Cycle II
      • Find Nth Element from End
      • Remove Nth Node From End of List
      • Add Two Numbers
      • Merge Two Sorted Lists
      • Remove Nth Node From End of List
      • Reverse Linked List
      • Remove Linked List Elements
      • Odd Even Linked List
      • Design Doubly Linked List
      • Flatten a Multilevel Doubly Linked List
      • Rotate List
      • Copy List with Random Pointer
      • Insert into a Cyclic Sorted List
      • Delete Node in a Linked List
      • Palindrome Linked List
    • Set
      • Intersection of Two Arrays
      • Single Number
      • Contains Duplicate
      • Contains Duplicate II
      • Jewels and Stones
      • Longest Substring Without Repeating Characters
      • Two Sum III - Data structure design
      • Valid Sudoku
      • Missing Number
    • Map
      • Two Sum
      • Isomorphic Strings
      • Minimum Index Sum of Two Lists
      • First Unique Character in a String
      • Intersection of Two Arrays II
      • Logger Rate Limiter
      • Group Anagrams
      • Group Shifted Strings
      • Find Duplicate Subtrees
      • 4Sum II
      • Top K Frequent Elements
      • Unique Word Abbreviation
      • Insert Delete GetRandom O(1)
    • Binary Tree
      • Binary Tree Preorder Traversal
      • Binary Tree Inorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Maximum Depth of Binary Tree
      • Symmetric Tree
      • Path Sum
      • Balanced Binary Tree
      • Count Univalue Subtrees
      • Construct Binary Tree from Inorder and Postorder Traversal
      • Construct Binary Tree from Preorder and Inorder Traversal
      • Populating Next Right Pointers in Each Node
      • Lowest Common Ancestor of a Binary Tree
      • Serialize and Deserialize Binary Tree
      • Median of Two Sorted Arrays
      • Invert Binary Tree
      • Find K-th Smallest Pair Distance
      • Split Array Largest Sum
    • Heap
    • Binary Search Tree
      • Validate Binary Search Tree
      • Inorder Successor in BST
      • Binary Search Tree Iterator
      • Search in a Binary Search Tree
      • Insert into a Binary Search Tree
      • Delete Node in a BST
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a Binary Search Tree
      • Contains Duplicate III
      • Height-Balanced BST
        • Balanced Binary Tree
        • Convert Sorted Array to Binary Search Tree
    • Map
    • N-ary Tree
      • N-ary Tree Preorder Traversal
      • N-ary Tree Postorder Traversal
      • N-ary Tree Level Order Traversal
      • Maximum Depth of N-ary Tree
      • Encode N-ary Tree to Binary Tree
      • Serialize and Deserialize N-ary Tree
    • Trie
      • Implement Trie (Prefix Tree)
      • Map Sum Pairs
      • Replace Words
      • Design Search Autocomplete System
      • Maximum XOR of Two Numbers in an Array
      • Add and Search Word - Data structure design
      • Word Search II
      • Word Squares
      • Longest Common Prefix
      • Palindrome Pairs
    • Balanced Tree
      • B-Tree
      • Red-black Tree
      • AVL Tree
    • Graph
      • A* Search
      • Breadth First Search
      • Depth First Search
      • Dijkstra Algorithm
  • Sequences
    • Fibonacci Sequence
  • Dynamic Programming
    • Knapsack problem
    • Climbing Stairs
    • Best Time to Buy and Sell Stock
    • Maximum Subarray
    • House Robber
  • Interviews
    • Google Leetcode
      • Repeated String Match
      • K Empty Slots
      • Next Closest Time
      • Longest Univalue Path
      • License Key Formatting
      • Spiral Matrix
      • Plus One
      • Trapping Rain Water
      • Longest Substring with At Most K Distinct Characters
      • Add Bold Tag in String
      • Game of Life
      • Read N Characters Given Read4
      • Read N Characters Given Read4 II - Call multiple times
      • One Edit Distance
      • Valid Palindrome
      • Valid Number
      • Valid Parentheses
      • Image Smoother
      • Intersection of Two Arrays
      • Max Consecutive Ones
      • Max Consecutive Ones II
      • Shortest Palindrome
      • First Missing Positive
      • First Unique Character in a String
      • Move Zeroes
      • Remove Duplicates from Sorted Array
      • Merge k Sorted Lists
      • Insert into a Cyclic Sorted List
      • Evaluate Division
      • Inorder Successor in BST
      • Robot Room Cleaner
      • Redundant Connection II
      • Course Schedule
      • Validate Binary Search Tree
      • Closest Binary Search Tree Value
      • Word Squares
      • Strobogrammatic Number II
      • Word Search II
      • Android Unlock Patterns
      • Minimum Window Substring
      • Kth Largest Element in an Array
      • Shortest Distance from All Buildings
      • Find K-th Smallest Pair Distance
      • Find K Pairs with Smallest Sums
      • Range Module
      • Insert Interval
      • Sort Transformed Array
      • Merge Intervals
      • Longest Palindromic Substring
      • Next Greater Element I
      • Pacific Atlantic Water Flow
      • Evaluate Reverse Polish Notation
      • Decode Ways
      • Word Break
      • Sentence Screen Fitting
      • Maximum Vacation Days
      • Edit Distance
      • Minimum Path Sum
      • House Robber II
      • Moving Average from Data Stream
      • Peeking Iterator
      • Binary Search Tree Iterator
      • Zigzag Iterator
      • Design Tic-Tac-Toe
      • Range Sum Query 2D - Mutable
      • UTF-8 Validation
      • Maximum Product of Word Lengths
  • Other
    • Game of Life
Powered by GitBook
On this page
  • Binary Search
  • Another ways to implement binary search
  • 3SUM problem with Binary Search

Was this helpful?

  1. Searching

Binary Search

PreviousFind Sum in ArrayNextFind Index Binary Search

Last updated 5 years ago

Was this helpful?

Binary Search

99% of binary search problems that you see online will fall into 1 of these 3 templates.

Note:The templates and their differences have been colored coded below.

If we have sorted array, we can perform binary search. We go into the middle of array, if equal, we found it, if smaller, go left, if bigger go right.

class BS {

    int find(int[] arr, int value) {

        int low = 0;
        int high = arr.length - 1;

        while (low <= high) {
            // here we divide it in half, and thus it is O(log n)
            int middle = low + ((high - low) / 2); 
            if (value < arr[middle]) {
                // go left
                high = middle - 1;
            } else if (value > arr[middle]) {
                // go right
                low = middle + 1;
            } else {
                // found!
                return middle;
            }
        }

        return -1;
    }
}

public class BinarySearch {

    public static void main(String[] args) {
        int[] arr = {1, 2, 3, 4, 6, 8, 10, 20, 50, 100};

        BS bs = new BS();
        int index3 = bs.find(arr, 4);
        System.out.println(index3);

        int index5 = bs.find(arr, 8);
        System.out.println(index5);

        int index8 = bs.find(arr, 50);
        System.out.println(index8);

        int notFound = bs.find(arr, 200);
        System.out.println(notFound);
    }
}

Another ways to implement binary search

It is used to search for an element or condition which requires accessing the current index and its immediate right neighbor's index in the array.

int binarySearch(int[] nums, int target){
  if(nums == null || nums.length == 0)
    return -1;

  int left = 0;
  int right = nums.length;
  while (left < right) {
    // Prevent (left + right) overflow
    int mid = left + (right - left) / 2;
    if (nums[mid] == target) { 
        return mid; 
    }
    else if(nums[mid] < target) { 
        left = mid + 1; 
    } else { 
        right = mid; 
    }
  }

  // Post-processing:
  // End Condition: left == right
  if (left != nums.length && nums[left] == target) {
      return left;
  }
  return -1;
}

This is used when requires accessing the current index and its immediate left and right neighbor's index in the array.

int binarySearch(int[] nums, int target) {
    if (nums == null || nums.length == 0)
        return -1;

    int left = 0, right = nums.length - 1;
    while (left + 1 < right){
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) {
            return mid;
        } else if (nums[mid] < target) {
            left = mid;
        } else {
            right = mid;
        }
    }

    // Post-processing:
    // End Condition: left + 1 == right
    if(nums[left] == target) return left;
    if(nums[right] == target) return right;
    return -1;
}

3SUM problem with Binary Search

We use binary search for finding k index of a value that is opposite to what is at position i and j. So we calculate -arr[i] - arr[j] and then we search for this value in the array. That means -arr[i] - arr[i] + arr[k] is equal to 0.

O(n^2 n log(n)), definitelly better than O(n^3).

import java.util.Arrays;

class TripletsWithBinarySearch {

    public int findZeroSums(int[] arr) {
        Arrays.sort(arr); // quick sort -> O(n log(n))

        int count = 0;
        int length = arr.length;
        for (int i = 0; i < length - 2; i++) { // O(n^2 n log(n))
            for (int j = i + 1; j < length - 1; j++) {
                int key = arr[i] + arr[j];
                int opposite = -key;
                int k = Arrays.binarySearch(arr, j + 1, length, opposite);
                if (k > j && arr[k] - opposite == 0) { // compare index of found with current position (j)
// this 'arr[k] - key == 0' part is actually useless, but it makes it easier to understand it
                    count++;
                }
            }
        }
        return count;
    }
}

public class SumInArray {

    public static void main(String[] args) {
        int[] arr = {0, 1, 2, -1, -2, 0, 5, 7};

        // O(n^2 logn)
        int tripletsBS = new TripletsWithBinarySearch().findZeroSums(arr);
        System.out.println(tripletsBS);
    }
}

is another implementation of the problem.

Here