Algorithms
  • Introduction
  • Analysis of Algorithms
  • Numbers
    • Reverse Integer
    • Palindroms
      • Valid Palindrome
    • Prime factor
    • Prime Number
    • Roman to Integer
    • Happy Number
    • p^k
  • Searching
    • Union-Find Algorithms
    • Finding Peak
    • Find Sum in Array
    • Binary Search
      • Find Index Binary Search
      • Sqrt(x)
      • Search in Rotated Sorted Array
      • Guess Number Higher or Lower
      • First Bad Version
      • Find Peak Element
      • Find Minimum in Rotated Sorted Array
      • Find Minimum in Rotated Sorted Array II
      • Search for a Range
      • Closest Binary Search Tree Value
      • Find K Closest Elements
      • Search in a Sorted Array of Unknown Size
      • Pow(x, n)
      • Valid Perfect Square
      • Find Minimum in Rotated Sorted Array II
      • Intersection of Two Arrays
      • Intersection of Two Arrays II
      • Two Sum II - Input array is sorted
      • Find the Duplicate Number
    • Longest Common Prefix
  • Sorting
    • Elementary Sorts
    • Insertion Sort
    • Bubble Sort
    • Mergesort
    • Quicksort
    • Radix Sort
    • Heap Sort
  • Data Structures
    • Array & List
      • Find Pivot Index
      • Largest Number At Least Twice of Others
      • Plus One
      • Diagonal Traverse
      • Spiral Matrix
      • Pascal's Triangle
      • Implement strStr()
      • Add Binary
      • Duplicate Counts
      • Find Duplicates
      • Reverse String
      • Array Partition I
      • Two Sum II - Input array is sorted
      • Remove Element
      • Max Consecutive Ones
      • Minimum Size Subarray Sum
      • Reverse Words in a String
      • Reverse Words in a String III
      • Remove Duplicates from Sorted Array
      • Move Zeroes
      • Rotate Array
      • Rotate Image
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Valid Anagram
      • 3Sum
      • String to Integer (atoi)
      • Count and Say
      • Merge Sorted Array
      • Shuffle an Array
      • Max Area of Island
    • Matrix
    • Stack
      • Valid Parentheses
      • Min Stack
    • Queue
    • Linked List
      • Design Linked List
      • Design Doubly Linked List
      • Find Middle Element
      • Doubly Linked List
      • Cyclic Linked List
      • Linked List Cycle II
      • Find Nth Element from End
      • Remove Nth Node From End of List
      • Add Two Numbers
      • Merge Two Sorted Lists
      • Remove Nth Node From End of List
      • Reverse Linked List
      • Remove Linked List Elements
      • Odd Even Linked List
      • Design Doubly Linked List
      • Flatten a Multilevel Doubly Linked List
      • Rotate List
      • Copy List with Random Pointer
      • Insert into a Cyclic Sorted List
      • Delete Node in a Linked List
      • Palindrome Linked List
    • Set
      • Intersection of Two Arrays
      • Single Number
      • Contains Duplicate
      • Contains Duplicate II
      • Jewels and Stones
      • Longest Substring Without Repeating Characters
      • Two Sum III - Data structure design
      • Valid Sudoku
      • Missing Number
    • Map
      • Two Sum
      • Isomorphic Strings
      • Minimum Index Sum of Two Lists
      • First Unique Character in a String
      • Intersection of Two Arrays II
      • Logger Rate Limiter
      • Group Anagrams
      • Group Shifted Strings
      • Find Duplicate Subtrees
      • 4Sum II
      • Top K Frequent Elements
      • Unique Word Abbreviation
      • Insert Delete GetRandom O(1)
    • Binary Tree
      • Binary Tree Preorder Traversal
      • Binary Tree Inorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Maximum Depth of Binary Tree
      • Symmetric Tree
      • Path Sum
      • Balanced Binary Tree
      • Count Univalue Subtrees
      • Construct Binary Tree from Inorder and Postorder Traversal
      • Construct Binary Tree from Preorder and Inorder Traversal
      • Populating Next Right Pointers in Each Node
      • Lowest Common Ancestor of a Binary Tree
      • Serialize and Deserialize Binary Tree
      • Median of Two Sorted Arrays
      • Invert Binary Tree
      • Find K-th Smallest Pair Distance
      • Split Array Largest Sum
    • Heap
    • Binary Search Tree
      • Validate Binary Search Tree
      • Inorder Successor in BST
      • Binary Search Tree Iterator
      • Search in a Binary Search Tree
      • Insert into a Binary Search Tree
      • Delete Node in a BST
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a Binary Search Tree
      • Contains Duplicate III
      • Height-Balanced BST
        • Balanced Binary Tree
        • Convert Sorted Array to Binary Search Tree
    • Map
    • N-ary Tree
      • N-ary Tree Preorder Traversal
      • N-ary Tree Postorder Traversal
      • N-ary Tree Level Order Traversal
      • Maximum Depth of N-ary Tree
      • Encode N-ary Tree to Binary Tree
      • Serialize and Deserialize N-ary Tree
    • Trie
      • Implement Trie (Prefix Tree)
      • Map Sum Pairs
      • Replace Words
      • Design Search Autocomplete System
      • Maximum XOR of Two Numbers in an Array
      • Add and Search Word - Data structure design
      • Word Search II
      • Word Squares
      • Longest Common Prefix
      • Palindrome Pairs
    • Balanced Tree
      • B-Tree
      • Red-black Tree
      • AVL Tree
    • Graph
      • A* Search
      • Breadth First Search
      • Depth First Search
      • Dijkstra Algorithm
  • Sequences
    • Fibonacci Sequence
  • Dynamic Programming
    • Knapsack problem
    • Climbing Stairs
    • Best Time to Buy and Sell Stock
    • Maximum Subarray
    • House Robber
  • Interviews
    • Google Leetcode
      • Repeated String Match
      • K Empty Slots
      • Next Closest Time
      • Longest Univalue Path
      • License Key Formatting
      • Spiral Matrix
      • Plus One
      • Trapping Rain Water
      • Longest Substring with At Most K Distinct Characters
      • Add Bold Tag in String
      • Game of Life
      • Read N Characters Given Read4
      • Read N Characters Given Read4 II - Call multiple times
      • One Edit Distance
      • Valid Palindrome
      • Valid Number
      • Valid Parentheses
      • Image Smoother
      • Intersection of Two Arrays
      • Max Consecutive Ones
      • Max Consecutive Ones II
      • Shortest Palindrome
      • First Missing Positive
      • First Unique Character in a String
      • Move Zeroes
      • Remove Duplicates from Sorted Array
      • Merge k Sorted Lists
      • Insert into a Cyclic Sorted List
      • Evaluate Division
      • Inorder Successor in BST
      • Robot Room Cleaner
      • Redundant Connection II
      • Course Schedule
      • Validate Binary Search Tree
      • Closest Binary Search Tree Value
      • Word Squares
      • Strobogrammatic Number II
      • Word Search II
      • Android Unlock Patterns
      • Minimum Window Substring
      • Kth Largest Element in an Array
      • Shortest Distance from All Buildings
      • Find K-th Smallest Pair Distance
      • Find K Pairs with Smallest Sums
      • Range Module
      • Insert Interval
      • Sort Transformed Array
      • Merge Intervals
      • Longest Palindromic Substring
      • Next Greater Element I
      • Pacific Atlantic Water Flow
      • Evaluate Reverse Polish Notation
      • Decode Ways
      • Word Break
      • Sentence Screen Fitting
      • Maximum Vacation Days
      • Edit Distance
      • Minimum Path Sum
      • House Robber II
      • Moving Average from Data Stream
      • Peeking Iterator
      • Binary Search Tree Iterator
      • Zigzag Iterator
      • Design Tic-Tac-Toe
      • Range Sum Query 2D - Mutable
      • UTF-8 Validation
      • Maximum Product of Word Lengths
  • Other
    • Game of Life
Powered by GitBook
On this page

Was this helpful?

  1. Data Structures
  2. Linked List

Design Linked List

Design your implementation of the linked list. You can choose to use the singly linked list or the doubly linked list. A node in a singly linked list should have two attributes:val andnext.valis the value of the current node, andnext is a pointer/reference to the next node. If you want to use the doubly linked list, you will need one more attributeprevto indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.

Implement these functions in your linked list class:

  • get(index) : Get the value of theindex-th node in the linked list. If the index is invalid, return-1

  • addAtHead(val) : Add a node of valueval before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.

  • addAtTail(val) : Append a node of valueval to the last element of the linked list.

  • addAtIndex(index, val) : Add a node of valueval before theindex-th node in the linked list. Ifindex equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.

  • deleteAtIndex(index) : Delete theindex-th node in the linked list, if the index is valid.

Example:

MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1, 2);  // linked list becomes 1->2->3
linkedList.get(1);            // returns 2
linkedList.deleteAtIndex(1);  // now the linked list is 1->3
linkedList.get(1);            // returns 3

Note:

  • All values will be in the range of[1, 1000]

  • The number of operations will be in the range of [1, 1000]

  • Please do not use the built-in LinkedList library.

Solution

class MyLinkedList {

    Node head;

    public MyLinkedList() {
    }

    /** Get the value of the index-th node in the linked list. If the index is invalid, return -1. */
    public int get(int index) {
        //System.out.println("get: " + index);
        int i = 0;
        Node current = head;
        while (i < index) {
            if (current != null) {
                current = current.next;
            } else  {
                return -1;
            }
            i++;
        }
        if (current == null) {
            return -1;
        }
        return current.value;
    }

    /** Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. */
    public void addAtHead(int val) {
        //System.out.println("addAtHead: " + val);
        if (head == null) {
            head = new Node(val);
        } else {
            Node temp = head;
            head = new Node(val);
            head.next = temp;
        }
        //System.out.println(head);
    }

    /** Append a node of value val to the last element of the linked list. */
    public void addAtTail(int val) {
        //System.out.println("addAtTail: " + val);
        Node current = head;
        Node previous = null;
        while (current != null) {
            previous = current;
            current = current.next;
        }
        previous.next = new Node(val);
        //System.out.println(head);
    }

    /** Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. */
    public void addAtIndex(int index, int val) {
        //System.out.println("addAtIndex: " + index + " " + val);
        int i = 0;
        Node current = head;
        Node previous = head;
        while (i < index) {
            if (current != null) {
                previous = current;
                current = current.next;
            } else {
                return;
            }
            i++;
        }
        if (previous != null) {
            previous.next = new Node(val);
            previous.next.next = current;
        } else {
            head = new Node(val);
        }

        //System.out.println(head);
        return;
    }

    /** Delete the index-th node in the linked list, if the index is valid. */
    public void deleteAtIndex(int index) {
        //System.out.println("deleteAtIndex: " + index);
        int i = 0;
        // 1 -> 2 -> 3 (1)
        Node current = head;
        Node previous = null;
        Node next = null;
        while (i < index) {
            if (current != null) {
                previous = current;
                current = current.next;
                if (current != null) {
                    next = current.next;   
                }
            } else  {
                return;
            }
            i++;
        }
        if (previous != null && current != null) {
            previous.next = current.next;
        }
        //System.out.println(head);
    }
}
class Node {
    Node next;
    int value;
    public Node(int value) {
        this.value = value;
    }
    public String toString() {
        Node current = this;
        StringBuilder builder = new StringBuilder();
        while (current != null) {
            builder.append(current.value);
            builder.append(' ');
            current = current.next;
        }
        return builder.toString();
    }
}
/**
 * Your MyLinkedList object will be instantiated and called as such:
 * MyLinkedList obj = new MyLinkedList();
 * int param_1 = obj.get(index);
 * obj.addAtHead(val);
 * obj.addAtTail(val);
 * obj.addAtIndex(index,val);
 * obj.deleteAtIndex(index);
 */
PreviousLinked ListNextDesign Doubly Linked List

Last updated 5 years ago

Was this helpful?