Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to thedefinition of LCA on Wikipedia : “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allowa node to be a descendant of itself ).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
Copy _______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
Example 1:
Copy Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Copy Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a
Note:
All of the nodes' values will be unique.
p and q are different and both values will exist in the BST.
Solution
If root value is bigger than p node and bigger than value of q node, we go to left. If value is smaller, we go to right. Otherwise we return the node.
Copy public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root.val < p.val && root.val < q.val){
return lowestCommonAncestor(root.right, p, q);
} else if(root.val > p.val && root.val > q.val){
return lowestCommonAncestor(root.left, p, q);
} else{
return root;
}
}
}
Another solution using min and max functions.
Copy class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root.val > Math.max(p.val, q.val)) {
return lowestCommonAncestor(root.left, p, q);
} else if (root.val < Math.min(p.val, q.val)) {
return lowestCommonAncestor(root.right, p, q);
} else {
return root;
}
}
}
Non recursive solution.
Copy public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
while (root.val > p.val && root.val > q.val) root = root.left;
while (root.val < p.val && root.val < q.val) root = root.right;
return root;
}
}