Algorithms
  • Introduction
  • Analysis of Algorithms
  • Numbers
    • Reverse Integer
    • Palindroms
      • Valid Palindrome
    • Prime factor
    • Prime Number
    • Roman to Integer
    • Happy Number
    • p^k
  • Searching
    • Union-Find Algorithms
    • Finding Peak
    • Find Sum in Array
    • Binary Search
      • Find Index Binary Search
      • Sqrt(x)
      • Search in Rotated Sorted Array
      • Guess Number Higher or Lower
      • First Bad Version
      • Find Peak Element
      • Find Minimum in Rotated Sorted Array
      • Find Minimum in Rotated Sorted Array II
      • Search for a Range
      • Closest Binary Search Tree Value
      • Find K Closest Elements
      • Search in a Sorted Array of Unknown Size
      • Pow(x, n)
      • Valid Perfect Square
      • Find Minimum in Rotated Sorted Array II
      • Intersection of Two Arrays
      • Intersection of Two Arrays II
      • Two Sum II - Input array is sorted
      • Find the Duplicate Number
    • Longest Common Prefix
  • Sorting
    • Elementary Sorts
    • Insertion Sort
    • Bubble Sort
    • Mergesort
    • Quicksort
    • Radix Sort
    • Heap Sort
  • Data Structures
    • Array & List
      • Find Pivot Index
      • Largest Number At Least Twice of Others
      • Plus One
      • Diagonal Traverse
      • Spiral Matrix
      • Pascal's Triangle
      • Implement strStr()
      • Add Binary
      • Duplicate Counts
      • Find Duplicates
      • Reverse String
      • Array Partition I
      • Two Sum II - Input array is sorted
      • Remove Element
      • Max Consecutive Ones
      • Minimum Size Subarray Sum
      • Reverse Words in a String
      • Reverse Words in a String III
      • Remove Duplicates from Sorted Array
      • Move Zeroes
      • Rotate Array
      • Rotate Image
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Valid Anagram
      • 3Sum
      • String to Integer (atoi)
      • Count and Say
      • Merge Sorted Array
      • Shuffle an Array
      • Max Area of Island
    • Matrix
    • Stack
      • Valid Parentheses
      • Min Stack
    • Queue
    • Linked List
      • Design Linked List
      • Design Doubly Linked List
      • Find Middle Element
      • Doubly Linked List
      • Cyclic Linked List
      • Linked List Cycle II
      • Find Nth Element from End
      • Remove Nth Node From End of List
      • Add Two Numbers
      • Merge Two Sorted Lists
      • Remove Nth Node From End of List
      • Reverse Linked List
      • Remove Linked List Elements
      • Odd Even Linked List
      • Design Doubly Linked List
      • Flatten a Multilevel Doubly Linked List
      • Rotate List
      • Copy List with Random Pointer
      • Insert into a Cyclic Sorted List
      • Delete Node in a Linked List
      • Palindrome Linked List
    • Set
      • Intersection of Two Arrays
      • Single Number
      • Contains Duplicate
      • Contains Duplicate II
      • Jewels and Stones
      • Longest Substring Without Repeating Characters
      • Two Sum III - Data structure design
      • Valid Sudoku
      • Missing Number
    • Map
      • Two Sum
      • Isomorphic Strings
      • Minimum Index Sum of Two Lists
      • First Unique Character in a String
      • Intersection of Two Arrays II
      • Logger Rate Limiter
      • Group Anagrams
      • Group Shifted Strings
      • Find Duplicate Subtrees
      • 4Sum II
      • Top K Frequent Elements
      • Unique Word Abbreviation
      • Insert Delete GetRandom O(1)
    • Binary Tree
      • Binary Tree Preorder Traversal
      • Binary Tree Inorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Maximum Depth of Binary Tree
      • Symmetric Tree
      • Path Sum
      • Balanced Binary Tree
      • Count Univalue Subtrees
      • Construct Binary Tree from Inorder and Postorder Traversal
      • Construct Binary Tree from Preorder and Inorder Traversal
      • Populating Next Right Pointers in Each Node
      • Lowest Common Ancestor of a Binary Tree
      • Serialize and Deserialize Binary Tree
      • Median of Two Sorted Arrays
      • Invert Binary Tree
      • Find K-th Smallest Pair Distance
      • Split Array Largest Sum
    • Heap
    • Binary Search Tree
      • Validate Binary Search Tree
      • Inorder Successor in BST
      • Binary Search Tree Iterator
      • Search in a Binary Search Tree
      • Insert into a Binary Search Tree
      • Delete Node in a BST
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a Binary Search Tree
      • Contains Duplicate III
      • Height-Balanced BST
        • Balanced Binary Tree
        • Convert Sorted Array to Binary Search Tree
    • Map
    • N-ary Tree
      • N-ary Tree Preorder Traversal
      • N-ary Tree Postorder Traversal
      • N-ary Tree Level Order Traversal
      • Maximum Depth of N-ary Tree
      • Encode N-ary Tree to Binary Tree
      • Serialize and Deserialize N-ary Tree
    • Trie
      • Implement Trie (Prefix Tree)
      • Map Sum Pairs
      • Replace Words
      • Design Search Autocomplete System
      • Maximum XOR of Two Numbers in an Array
      • Add and Search Word - Data structure design
      • Word Search II
      • Word Squares
      • Longest Common Prefix
      • Palindrome Pairs
    • Balanced Tree
      • B-Tree
      • Red-black Tree
      • AVL Tree
    • Graph
      • A* Search
      • Breadth First Search
      • Depth First Search
      • Dijkstra Algorithm
  • Sequences
    • Fibonacci Sequence
  • Dynamic Programming
    • Knapsack problem
    • Climbing Stairs
    • Best Time to Buy and Sell Stock
    • Maximum Subarray
    • House Robber
  • Interviews
    • Google Leetcode
      • Repeated String Match
      • K Empty Slots
      • Next Closest Time
      • Longest Univalue Path
      • License Key Formatting
      • Spiral Matrix
      • Plus One
      • Trapping Rain Water
      • Longest Substring with At Most K Distinct Characters
      • Add Bold Tag in String
      • Game of Life
      • Read N Characters Given Read4
      • Read N Characters Given Read4 II - Call multiple times
      • One Edit Distance
      • Valid Palindrome
      • Valid Number
      • Valid Parentheses
      • Image Smoother
      • Intersection of Two Arrays
      • Max Consecutive Ones
      • Max Consecutive Ones II
      • Shortest Palindrome
      • First Missing Positive
      • First Unique Character in a String
      • Move Zeroes
      • Remove Duplicates from Sorted Array
      • Merge k Sorted Lists
      • Insert into a Cyclic Sorted List
      • Evaluate Division
      • Inorder Successor in BST
      • Robot Room Cleaner
      • Redundant Connection II
      • Course Schedule
      • Validate Binary Search Tree
      • Closest Binary Search Tree Value
      • Word Squares
      • Strobogrammatic Number II
      • Word Search II
      • Android Unlock Patterns
      • Minimum Window Substring
      • Kth Largest Element in an Array
      • Shortest Distance from All Buildings
      • Find K-th Smallest Pair Distance
      • Find K Pairs with Smallest Sums
      • Range Module
      • Insert Interval
      • Sort Transformed Array
      • Merge Intervals
      • Longest Palindromic Substring
      • Next Greater Element I
      • Pacific Atlantic Water Flow
      • Evaluate Reverse Polish Notation
      • Decode Ways
      • Word Break
      • Sentence Screen Fitting
      • Maximum Vacation Days
      • Edit Distance
      • Minimum Path Sum
      • House Robber II
      • Moving Average from Data Stream
      • Peeking Iterator
      • Binary Search Tree Iterator
      • Zigzag Iterator
      • Design Tic-Tac-Toe
      • Range Sum Query 2D - Mutable
      • UTF-8 Validation
      • Maximum Product of Word Lengths
  • Other
    • Game of Life
Powered by GitBook
On this page

Was this helpful?

  1. Data Structures

Binary Search Tree

PreviousHeapNextValidate Binary Search Tree

Last updated 5 years ago

Was this helpful?

is a data structure to store hierarchical data where each node has only two leaf nodes and nodes are sorted from left to right. BST is also called ordered or sorted binary tree.

A Binary Search Tree is a special form of a binary tree. The value in each node must be greater than (or equal to) any values in its left subtree but less than (or equal to) any values in its right subtree.

Like a normal binary tree, we can traverse a BST in preorder, inorder, postorder or level-order. However, it is noteworthy that inorder traversal in BST will be in ascending order. Therefore, the inorder traversal is the most frequent used traversal method of a BST.

BST is good for searching in general O(log n). Heaps are the best when we want to get maximum or minimum of set of values, complexity of O(1). More about the difference between .

The basic algorithm is: when we want to put a value into the tree, we go from the root and we put smaller values on left and higher values on right side.

import java.util.LinkedList;
import java.util.Queue;

class BinarySearchTree<T extends Comparable<T>> {

    TreeNode<T> root;

    public void add(T value) {
        if (root == null) {
            root = new TreeNode<>(value);
        } else {
            addNode(value, root);
        }
    }

    public void addNode(T value, TreeNode<T> node) {
        if (isValueHigherThanNodeValue(value, node)) {
            // higher values go on left
            addToRight(value, node);
        } else {
            // lower values go on left
            addToLeft(value, node);
        }
    }

    private void addToLeft(T value, TreeNode<T> node) {
        if (node.left == null) {
            node.left = new TreeNode<>(value);
            return;
        }
        addNode(value, node.left);
    }

    private void addToRight(T value, TreeNode<T> node) {
        if (node.right == null) {
            node.right = new TreeNode<>(value);
            return;
        }
        addNode(value, node.right);
    }

    private boolean isValueHigherThanNodeValue(T value, TreeNode<T> current) {
        return value.compareTo(current.value) > 0;
    }

    public String toString() {
        return asString(root, 0);
    }

    private String asString(TreeNode<T> node, int level) {
        if (node == null) return null;
        String result = spaces(level) + node.value.toString() + " \n";
        level++;
        if (node.left != null) {
            result += asString(node.left, level);
        }
        if (node.right != null) {
            result += asString(node.right, level);
        }
        return result;
    }

    private String spaces(int level) {
        String spaces = "";
        for (int i = 0; i < level; i++) {
            spaces += "-";
        }
        return spaces;
    }

    // read to queue in 'breath first' order
    public Queue<TreeNode<T>> readToQueue(TreeNode<T> node) {
        Queue<TreeNode<T>> queue = new LinkedList<>();
        Queue<TreeNode<T>> temp = new LinkedList<>();
        temp.add(node);
        while (temp.size() > 0) {
            TreeNode<T> n = temp.poll();
            queue.add(n);
            if (n.left != null) {
                temp.add(n.left);
            }
            if (n.right != null) {
                temp.add(n.right);
            }
        }
        return queue;
    }

    // breath first or a.k.a. level order traversal
    // -> A
    // -> B -> C
    // -> D -> E -> F -> G
    public String breathFirst(TreeNode<T> node) {
        Queue<TreeNode<T>> queue = new LinkedList<>();
        queue.add(node);
        String value = "";
        while (queue.size() > 0) {
            TreeNode<T> n = queue.poll();
            value += n.value.toString() + " ";
            if (n.left != null) {
                queue.add(n.left);
            }
            if (n.right != null) {
                queue.add(n.right);
            }
        }
        return value;
    }

    enum Order {
        Pre, In, Post
    }

    // pre order traversal - root, left, right
    // in order traversal - left, root, right
    // post order traversal - left, right root
    public String depthFirst(TreeNode<T> node, Order order) {
        if (node == null) return null;
        String value = "";
        if (order.equals(Order.Pre)) {
            value += node.value.toString() + " ";
        }
        if (node.left != null) {
            value += depthFirst(node.left, order);
        }
        if (order.equals(Order.In)) {
            value += node.value.toString() + " ";
        }
        if (node.right != null) {
            value += depthFirst(node.right, order);
        }
        if (order.equals(Order.Post)) {
            value += node.value.toString() + " ";
        }

        return value;
    }
}

We have implemented few types of tree traversal. Here is code that creates BST and uses couple of BST traversals.

import java.util.LinkedList;
import java.util.Queue;

public class BinarySearchTreeDemo {
    public static void main(String... args) {
        BinarySearchTree<Integer> bst = new BinarySearchTree<>();

        bst.add(10);
        bst.add(5);
        bst.add(15);
        bst.add(2);
        bst.add(0);
        bst.add(25);
        bst.add(20);

        System.out.println("BST:");
        System.out.println(bst);

        System.out.println("Breath First:");
        System.out.println(bst.breathFirst(bst.root));

        System.out.println("Pre order:");
        String preOrder = bst.depthFirst(bst.root, BinarySearchTree.Order.Pre);
        System.out.println(preOrder);

        System.out.println("In order:");
        String inOrder = bst.depthFirst(bst.root, BinarySearchTree.Order.In);
        System.out.println(inOrder);

        System.out.println("Post order:");
        String postOrder = bst.depthFirst(bst.root, BinarySearchTree.Order.Post);
        System.out.println(postOrder);
    }
}

Here is the output.

BST:
10 
-5 
--2 
---0 
-15 
--25 
---20 

Breath First:
10 5 15 2 25 0 20 
Pre order:
10 5 2 0 15 25 20 
In order:
0 2 5 10 15 20 25 
Post order:
0 2 5 20 25 15 10
Binary Search Tree
heap and BST