Mergesort
Last updated
Last updated
Complexity: O(n log n). A very good explanation of merge sort by Rob Edwards. Is stable but can't be done in-place.
divide array in to two halves
recursively sort each half
recursively start dividing the first half, when you get into two
merge two halfs
Here is a solution I was able to develop. It could be optimized, we create temp array for every merge, it could be created only once at the beginning.
package sorting;
import java.util.Arrays;
public class MergeSort3 {
public static void main(String[] args) {
int[] sortedArray = {4, 5, 1, 2};
mergeAndSortArrays(sortedArray, 0, sortedArray.length / 2, sortedArray.length - 1);
System.out.println(Arrays.toString(sortedArray));
int[] array = {5, 4, 3, 2, 1, 100, -1};
sort(array, 0, array.length - 1);
System.out.println(Arrays.toString(array));
}
static void sort(int[] array, int left, int right) {
if (left < right) {
int middle = (left + right) / 2;
sort(array, left, middle);
sort(array, middle + 1, right);
mergeSortedArrays(array, left, middle + 1, right);
}
}
static void mergeAndSortArrays(int[] array, int left, int middle, int right) {
int[] temp = new int[array.length];
int index = left;
int index1 = left;
int index2 = middle;
while (index1 < middle && index2 <= right) {
if (array[index1] <= array[index2]) {
temp[index] = array[index1];
index++;
index1++;
} else {
temp[index] = array[index2];
index++;
index2++;
}
}
while (index1 < middle) {
temp[index] = array[index1];
index++;
index1++;
}
while (index2 <= right) {
temp[index] = array[index2];
index++;
index2++;
}
for (int i = left; i <= right; i++) {
array[i] = temp[i];
}
}
}
Here is another implementation.
class MergerSort2 {
public static void main(String[] args) {
Integer[] a = {2, 6, 3, 5, 1};
mergeSort(a);
System.out.println(Arrays.toString(a));
}
public static void mergeSort(Comparable[] a) {
Comparable[] tmp = new Comparable[a.length];
mergeSort(a, tmp, 0, a.length - 1);
}
private static void mergeSort(Comparable[] a, Comparable[] tmp, int left, int right) {
if (left < right) {
int center = (left + right) / 2;
mergeSort(a, tmp, left, center);
mergeSort(a, tmp, center + 1, right);
merge(a, tmp, left, center + 1, right);
}
}
private static void merge(Comparable[] arr, Comparable[] tmp, int left, int right, int rightEnd) {
int leftEnd = right - 1;
int k = left;
int num = rightEnd - left + 1;
while (left <= leftEnd && right <= rightEnd)
if (arr[left].compareTo(arr[right]) <= 0)
tmp[k++] = arr[left++];
else
tmp[k++] = arr[right++];
while (left <= leftEnd) // Copy rest of first half
tmp[k++] = arr[left++];
while (right <= rightEnd) // Copy rest of right half
tmp[k++] = arr[right++];
// Copy tmp back
for (int i = 0; i < num; i++, rightEnd--)
arr[rightEnd] = tmp[rightEnd];
}
}
Here is another implementation. I have put it here just as a reference, but I don't like it.
class MergeSort1 {
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int[n1];
int R[] = new int[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
void sort(int arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
public static void main(String args[]) {
int arr[] = {12, 11, 13, 5, 6, 7};
System.out.println("Given Array");
printArray(arr);
MergeSort1 ob = new MergeSort1();
ob.sort(arr, 0, arr.length - 1);
System.out.println("\nSorted array");
System.out.println(Arrays.toString(arr));
}
}