class Solution {
public int[] searchRange(int[] nums, int target) {
int[] targetRange = {-1, -1};
// find the index of the leftmost appearance of `target`.
for (int i = 0; i < nums.length; i++) {
if (nums[i] == target) {
targetRange[0] = i;
break;
}
}
// if the last loop did not find any index, then there is no valid range
// and we return [-1, -1].
if (targetRange[0] == -1) {
return targetRange;
}
// find the index of the rightmost appearance of `target` (by reverse
// iteration). it is guaranteed to appear.
for (int j = nums.length-1; j >= 0; j--) {
if (nums[j] == target) {
targetRange[1] = j;
break;
}
}
return targetRange;
}
}
Using binary search.
class Solution {
// returns leftmost (or rightmost) index at which `target` should be
// inserted in sorted array `nums` via binary search.
private int extremeInsertionIndex(int[] nums, int target, boolean left) {
int lo = 0;
int hi = nums.length;
while (lo < hi) {
int mid = (lo+hi)/2;
if (nums[mid] > target || (left && target == nums[mid])) {
hi = mid;
}
else {
lo = mid+1;
}
}
return lo;
}
public int[] searchRange(int[] nums, int target) {
int[] targetRange = {-1, -1};
int leftIdx = extremeInsertionIndex(nums, target, true);
// assert that `leftIdx` is within the array bounds and that `target`
// is actually in `nums`.
if (leftIdx == nums.length || nums[leftIdx] != target) {
return targetRange;
}
targetRange[0] = leftIdx;
targetRange[1] = extremeInsertionIndex(nums, target, false) - 1;
return targetRange;
}
}