Algorithms
  • Introduction
  • Analysis of Algorithms
  • Numbers
    • Reverse Integer
    • Palindroms
      • Valid Palindrome
    • Prime factor
    • Prime Number
    • Roman to Integer
    • Happy Number
    • p^k
  • Searching
    • Union-Find Algorithms
    • Finding Peak
    • Find Sum in Array
    • Binary Search
      • Find Index Binary Search
      • Sqrt(x)
      • Search in Rotated Sorted Array
      • Guess Number Higher or Lower
      • First Bad Version
      • Find Peak Element
      • Find Minimum in Rotated Sorted Array
      • Find Minimum in Rotated Sorted Array II
      • Search for a Range
      • Closest Binary Search Tree Value
      • Find K Closest Elements
      • Search in a Sorted Array of Unknown Size
      • Pow(x, n)
      • Valid Perfect Square
      • Find Minimum in Rotated Sorted Array II
      • Intersection of Two Arrays
      • Intersection of Two Arrays II
      • Two Sum II - Input array is sorted
      • Find the Duplicate Number
    • Longest Common Prefix
  • Sorting
    • Elementary Sorts
    • Insertion Sort
    • Bubble Sort
    • Mergesort
    • Quicksort
    • Radix Sort
    • Heap Sort
  • Data Structures
    • Array & List
      • Find Pivot Index
      • Largest Number At Least Twice of Others
      • Plus One
      • Diagonal Traverse
      • Spiral Matrix
      • Pascal's Triangle
      • Implement strStr()
      • Add Binary
      • Duplicate Counts
      • Find Duplicates
      • Reverse String
      • Array Partition I
      • Two Sum II - Input array is sorted
      • Remove Element
      • Max Consecutive Ones
      • Minimum Size Subarray Sum
      • Reverse Words in a String
      • Reverse Words in a String III
      • Remove Duplicates from Sorted Array
      • Move Zeroes
      • Rotate Array
      • Rotate Image
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Valid Anagram
      • 3Sum
      • String to Integer (atoi)
      • Count and Say
      • Merge Sorted Array
      • Shuffle an Array
      • Max Area of Island
    • Matrix
    • Stack
      • Valid Parentheses
      • Min Stack
    • Queue
    • Linked List
      • Design Linked List
      • Design Doubly Linked List
      • Find Middle Element
      • Doubly Linked List
      • Cyclic Linked List
      • Linked List Cycle II
      • Find Nth Element from End
      • Remove Nth Node From End of List
      • Add Two Numbers
      • Merge Two Sorted Lists
      • Remove Nth Node From End of List
      • Reverse Linked List
      • Remove Linked List Elements
      • Odd Even Linked List
      • Design Doubly Linked List
      • Flatten a Multilevel Doubly Linked List
      • Rotate List
      • Copy List with Random Pointer
      • Insert into a Cyclic Sorted List
      • Delete Node in a Linked List
      • Palindrome Linked List
    • Set
      • Intersection of Two Arrays
      • Single Number
      • Contains Duplicate
      • Contains Duplicate II
      • Jewels and Stones
      • Longest Substring Without Repeating Characters
      • Two Sum III - Data structure design
      • Valid Sudoku
      • Missing Number
    • Map
      • Two Sum
      • Isomorphic Strings
      • Minimum Index Sum of Two Lists
      • First Unique Character in a String
      • Intersection of Two Arrays II
      • Logger Rate Limiter
      • Group Anagrams
      • Group Shifted Strings
      • Find Duplicate Subtrees
      • 4Sum II
      • Top K Frequent Elements
      • Unique Word Abbreviation
      • Insert Delete GetRandom O(1)
    • Binary Tree
      • Binary Tree Preorder Traversal
      • Binary Tree Inorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Maximum Depth of Binary Tree
      • Symmetric Tree
      • Path Sum
      • Balanced Binary Tree
      • Count Univalue Subtrees
      • Construct Binary Tree from Inorder and Postorder Traversal
      • Construct Binary Tree from Preorder and Inorder Traversal
      • Populating Next Right Pointers in Each Node
      • Lowest Common Ancestor of a Binary Tree
      • Serialize and Deserialize Binary Tree
      • Median of Two Sorted Arrays
      • Invert Binary Tree
      • Find K-th Smallest Pair Distance
      • Split Array Largest Sum
    • Heap
    • Binary Search Tree
      • Validate Binary Search Tree
      • Inorder Successor in BST
      • Binary Search Tree Iterator
      • Search in a Binary Search Tree
      • Insert into a Binary Search Tree
      • Delete Node in a BST
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a Binary Search Tree
      • Contains Duplicate III
      • Height-Balanced BST
        • Balanced Binary Tree
        • Convert Sorted Array to Binary Search Tree
    • Map
    • N-ary Tree
      • N-ary Tree Preorder Traversal
      • N-ary Tree Postorder Traversal
      • N-ary Tree Level Order Traversal
      • Maximum Depth of N-ary Tree
      • Encode N-ary Tree to Binary Tree
      • Serialize and Deserialize N-ary Tree
    • Trie
      • Implement Trie (Prefix Tree)
      • Map Sum Pairs
      • Replace Words
      • Design Search Autocomplete System
      • Maximum XOR of Two Numbers in an Array
      • Add and Search Word - Data structure design
      • Word Search II
      • Word Squares
      • Longest Common Prefix
      • Palindrome Pairs
    • Balanced Tree
      • B-Tree
      • Red-black Tree
      • AVL Tree
    • Graph
      • A* Search
      • Breadth First Search
      • Depth First Search
      • Dijkstra Algorithm
  • Sequences
    • Fibonacci Sequence
  • Dynamic Programming
    • Knapsack problem
    • Climbing Stairs
    • Best Time to Buy and Sell Stock
    • Maximum Subarray
    • House Robber
  • Interviews
    • Google Leetcode
      • Repeated String Match
      • K Empty Slots
      • Next Closest Time
      • Longest Univalue Path
      • License Key Formatting
      • Spiral Matrix
      • Plus One
      • Trapping Rain Water
      • Longest Substring with At Most K Distinct Characters
      • Add Bold Tag in String
      • Game of Life
      • Read N Characters Given Read4
      • Read N Characters Given Read4 II - Call multiple times
      • One Edit Distance
      • Valid Palindrome
      • Valid Number
      • Valid Parentheses
      • Image Smoother
      • Intersection of Two Arrays
      • Max Consecutive Ones
      • Max Consecutive Ones II
      • Shortest Palindrome
      • First Missing Positive
      • First Unique Character in a String
      • Move Zeroes
      • Remove Duplicates from Sorted Array
      • Merge k Sorted Lists
      • Insert into a Cyclic Sorted List
      • Evaluate Division
      • Inorder Successor in BST
      • Robot Room Cleaner
      • Redundant Connection II
      • Course Schedule
      • Validate Binary Search Tree
      • Closest Binary Search Tree Value
      • Word Squares
      • Strobogrammatic Number II
      • Word Search II
      • Android Unlock Patterns
      • Minimum Window Substring
      • Kth Largest Element in an Array
      • Shortest Distance from All Buildings
      • Find K-th Smallest Pair Distance
      • Find K Pairs with Smallest Sums
      • Range Module
      • Insert Interval
      • Sort Transformed Array
      • Merge Intervals
      • Longest Palindromic Substring
      • Next Greater Element I
      • Pacific Atlantic Water Flow
      • Evaluate Reverse Polish Notation
      • Decode Ways
      • Word Break
      • Sentence Screen Fitting
      • Maximum Vacation Days
      • Edit Distance
      • Minimum Path Sum
      • House Robber II
      • Moving Average from Data Stream
      • Peeking Iterator
      • Binary Search Tree Iterator
      • Zigzag Iterator
      • Design Tic-Tac-Toe
      • Range Sum Query 2D - Mutable
      • UTF-8 Validation
      • Maximum Product of Word Lengths
  • Other
    • Game of Life
Powered by GitBook
On this page

Was this helpful?

  1. Data Structures
  2. Binary Tree

Construct Binary Tree from Inorder and Postorder Traversal

Given inorder and postorder traversal of a tree, construct the binary tree.

Note: You may assume that duplicates do not exist in the tree.

For example, given

inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]

Return the following binary tree:

    3
   / \
  9  20
    /  \
   15   7

Explanation:

The Basics:

Inorder, postorder, and preorder are all flavors of Depth First Search. The difference between them is when the child nodes are visited relative to the root node.

Inorder is left, root, right Postorder is left, right, root Preorder is root, left, right

Note: outside of the context of this question, the order of the child nodes can be reversed. The thing that matters is when the root node is visited relative to the child nodes.

Observation 1:

If we reverse the postorder array, we end up with a preorder array (only root, right, left instead of root, left, right).

Observation 2:

The relative positions of the values in the inorder array can tell us whether a value appears on the left or right side of another value in the tree.

Strategy:

Reverse the postorder traversal to get a preorder traversal. If a value in the preorder traversal is on the right side of its previous value, the current value is the previous value's right child (because the preorder goes root, right, left and so the right node shows up immediately after the root and it keeps diving right). Otherwise, the current value might be the previous value's left child, but it might also be the left child of a grandparent or great-grandparent, and so we need to check up the tree until we either reach the root or reach a node that is still on the left of the current value.

Pseudo code:

save the indices of the values in the inorder array in a map so we can know the relative positon of values in the tree

starting from the end of the postorder array, create a node for the root

push the root node on to a stack

for (the remaining numbers in the postorder array, going in reverse order)
{
    create a node for the current number
    if the current number is on the right side of the node at the top of the stack
    {
        set the newly created node to be the node at the top of the stack's right child
    }
    else
    {
        while (the stack is not empty AND the number is on the left of the node at the top of the stack)
        {
            set the parent to be the result of popping the stack
        }
        set the newly created node to be the parent's left child
    }
    push the newly created node on to the stack
}

return the root node

Code:

class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if (inorder.length == 0) {
            return null;
        }

        Map<Integer, Integer> order = new HashMap<>();
        for (int i = 0; i < inorder.length; i ++) {
            order.put(inorder[i], i);
        }

        TreeNode root = new TreeNode(postorder[postorder.length - 1]);

        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        for (int i = postorder.length - 2; i >= 0; i --) {
            TreeNode curr = new TreeNode(postorder[i]);
            if (order.get(curr.val) > order.get(stack.peek().val)) {
                stack.peek().right = curr;
            } else {
                TreeNode parent = stack.pop();
                while (!stack.isEmpty() && (order.get(curr.val) < order.get(stack.peek().val))) {
                    parent = stack.pop();
                }
                parent.left = curr;
            }
            stack.push(curr);
        }

        return root;
    }
}

Solution

    3
   / \
  9  20
    /  \
   15   7

What we get from those two fields (different order of elements).

inorder = [9,3,15,20,7] left to 3 is 9, 15 is left to 20 and 7 is right to 20 - we can use this to
find whether an element is on left or right side (while building a tree)
postorder = [9,15,7,20,3] if we go from end, we can reconstruct tree

Here is a solution.

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if (inorder.length == 0 || postorder.length == 0) return null;
        Map<Integer, Integer> mapping = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) {
            mapping.put(inorder[i], i);
        }
        TreeNode root = new TreeNode(postorder[postorder.length - 1]);
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        for (int i = postorder.length - 2; i >= 0; i--) {
            int val = postorder[i];
            TreeNode current = new TreeNode(val);
            int stackVal = stack.peek().val;
            if (mapping.get(val) > mapping.get(stackVal)) {
                stack.peek().right = current;
            } else {
                TreeNode parent = stack.pop();
                while (!stack.isEmpty() && mapping.get(val) < mapping.get(stack.peek().val)) { 
                    parent = stack.pop();
                }
                parent.left = current;
            }
            stack.push(current);
        }
        return root;
    }
}
PreviousCount Univalue SubtreesNextConstruct Binary Tree from Preorder and Inorder Traversal

Last updated 5 years ago

Was this helpful?