Given anon-emptyarray of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai< 231. Find the maximum result of aiXOR aj, where 0 ≤i,j<n. Could you do this in O(n) runtime?
Example:
Input: [3, 10, 5, 25, 2, 8]
Output: 28
Explanation: The maximum result is 5 ^ 25 = 28.
Solution
Using hash map.
public class Solution {
public int findMaximumXOR(int[] nums) {
int max = 0, mask = 0;
for(int i = 31; i >= 0; i--){
mask = mask | (1 << i);
Set<Integer> set = new HashSet<>();
for(int num : nums){
set.add(num & mask);
}
int tmp = max | (1 << i);
for(int prefix : set){
if(set.contains(tmp ^ prefix)) {
max = tmp;
break;
}
}
}
return max;
}
}
Using trie.
public class Solution {
class Trie {
Trie[] children;
public Trie() {
children = new Trie[2];
}
}
public int findMaximumXOR(int[] nums) {
if(nums == null || nums.length == 0) {
return 0;
}
// Init Trie.
Trie root = new Trie();
for(int num: nums) {
Trie curNode = root;
for(int i = 31; i >= 0; i --) {
int curBit = (num >>> i) & 1;
if(curNode.children[curBit] == null) {
curNode.children[curBit] = new Trie();
}
curNode = curNode.children[curBit];
}
}
int max = Integer.MIN_VALUE;
for(int num: nums) {
Trie curNode = root;
int curSum = 0;
for(int i = 31; i >= 0; i --) {
int curBit = (num >>> i) & 1;
if(curNode.children[curBit ^ 1] != null) {
curSum += (1 << i);
curNode = curNode.children[curBit ^ 1];
}else {
curNode = curNode.children[curBit];
}
}
max = Math.max(curSum, max);
}
return max;
}
}