Intersection of Two Arrays
Given two arrays, write a function to compute their intersection.
Example:
Given nums1=[1, 2, 2, 1]
, nums2=[2, 2]
, return[2]
.
Solution
Time complexity O(n).
class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
// iterate through the first array and add it into set (to ensure unique values)
// then iterate through second array and if the value is contained, it is intersection
// than move data from set into array and retur it back
Set<Integer> values = new HashSet<>();
for (int num : nums1) {
values.add(num);
}
Set<Integer> intersections = new HashSet<>();
for (int num : nums2) {
if (values.contains(num)) {
intersections.add(num);
}
}
int[] result = new int[intersections.size()];
int index = 0;
for (Integer num : intersections) {
result[index++] = num;
}
return result;
}
}
Sort both arrays, use two pointers. Time complexity: O(n log n)
public class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
Set<Integer> set = new HashSet<>();
Arrays.sort(nums1);
Arrays.sort(nums2);
int i = 0;
int j = 0;
while (i < nums1.length && j < nums2.length) {
if (nums1[i] < nums2[j]) {
i++;
} else if (nums1[i] > nums2[j]) {
j++;
} else {
set.add(nums1[i]);
i++;
j++;
}
}
int[] result = new int[set.size()];
int k = 0;
for (Integer num : set) {
result[k++] = num;
}
return result;
}
}
Binary search. Time complexity: O(n log n)
public class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
Set<Integer> set = new HashSet<>();
Arrays.sort(nums2);
for (Integer num : nums1) {
if (binarySearch(nums2, num)) {
set.add(num);
}
}
int i = 0;
int[] result = new int[set.size()];
for (Integer num : set) {
result[i++] = num;
}
return result;
}
public boolean binarySearch(int[] nums, int target) {
int low = 0;
int high = nums.length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (nums[mid] == target) {
return true;
}
if (nums[mid] > target) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return false;
}
}
Last updated